'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , h(ok(X)) -> ok(h(X)) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X))} Details: We have computed the following set of weak (innermost) dependency pairs: { active^#(f(X)) -> c_0(g^#(h(f(X)))) , active^#(f(X)) -> c_1(f^#(active(X))) , active^#(h(X)) -> c_2(h^#(active(X))) , f^#(mark(X)) -> c_3(f^#(X)) , h^#(mark(X)) -> c_4(h^#(X)) , proper^#(f(X)) -> c_5(f^#(proper(X))) , proper^#(g(X)) -> c_6(g^#(proper(X))) , proper^#(h(X)) -> c_7(h^#(proper(X))) , f^#(ok(X)) -> c_8(f^#(X)) , g^#(ok(X)) -> c_9(g^#(X)) , h^#(ok(X)) -> c_10(h^#(X)) , top^#(mark(X)) -> c_11(top^#(proper(X))) , top^#(ok(X)) -> c_12(top^#(active(X)))} The usable rules are: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} The estimated dependency graph contains the following edges: {active^#(f(X)) -> c_0(g^#(h(f(X))))} ==> {g^#(ok(X)) -> c_9(g^#(X))} {active^#(f(X)) -> c_1(f^#(active(X)))} ==> {f^#(ok(X)) -> c_8(f^#(X))} {active^#(f(X)) -> c_1(f^#(active(X)))} ==> {f^#(mark(X)) -> c_3(f^#(X))} {active^#(h(X)) -> c_2(h^#(active(X)))} ==> {h^#(ok(X)) -> c_10(h^#(X))} {active^#(h(X)) -> c_2(h^#(active(X)))} ==> {h^#(mark(X)) -> c_4(h^#(X))} {f^#(mark(X)) -> c_3(f^#(X))} ==> {f^#(ok(X)) -> c_8(f^#(X))} {f^#(mark(X)) -> c_3(f^#(X))} ==> {f^#(mark(X)) -> c_3(f^#(X))} {h^#(mark(X)) -> c_4(h^#(X))} ==> {h^#(ok(X)) -> c_10(h^#(X))} {h^#(mark(X)) -> c_4(h^#(X))} ==> {h^#(mark(X)) -> c_4(h^#(X))} {proper^#(f(X)) -> c_5(f^#(proper(X)))} ==> {f^#(ok(X)) -> c_8(f^#(X))} {proper^#(f(X)) -> c_5(f^#(proper(X)))} ==> {f^#(mark(X)) -> c_3(f^#(X))} {proper^#(g(X)) -> c_6(g^#(proper(X)))} ==> {g^#(ok(X)) -> c_9(g^#(X))} {proper^#(h(X)) -> c_7(h^#(proper(X)))} ==> {h^#(ok(X)) -> c_10(h^#(X))} {proper^#(h(X)) -> c_7(h^#(proper(X)))} ==> {h^#(mark(X)) -> c_4(h^#(X))} {f^#(ok(X)) -> c_8(f^#(X))} ==> {f^#(ok(X)) -> c_8(f^#(X))} {f^#(ok(X)) -> c_8(f^#(X))} ==> {f^#(mark(X)) -> c_3(f^#(X))} {g^#(ok(X)) -> c_9(g^#(X))} ==> {g^#(ok(X)) -> c_9(g^#(X))} {h^#(ok(X)) -> c_10(h^#(X))} ==> {h^#(ok(X)) -> c_10(h^#(X))} {h^#(ok(X)) -> c_10(h^#(X))} ==> {h^#(mark(X)) -> c_4(h^#(X))} {top^#(mark(X)) -> c_11(top^#(proper(X)))} ==> {top^#(ok(X)) -> c_12(top^#(active(X)))} {top^#(mark(X)) -> c_11(top^#(proper(X)))} ==> {top^#(mark(X)) -> c_11(top^#(proper(X)))} {top^#(ok(X)) -> c_12(top^#(active(X)))} ==> {top^#(ok(X)) -> c_12(top^#(active(X)))} {top^#(ok(X)) -> c_12(top^#(active(X)))} ==> {top^#(mark(X)) -> c_11(top^#(proper(X)))} We consider the following path(s): 1) { top^#(mark(X)) -> c_11(top^#(proper(X))) , top^#(ok(X)) -> c_12(top^#(active(X)))} The usable rules for this path are the following: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X)) , top^#(mark(X)) -> c_11(top^#(proper(X))) , top^#(ok(X)) -> c_12(top^#(active(X)))} Details: We apply the weight gap principle, strictly orienting the rules {top^#(ok(X)) -> c_12(top^#(active(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {top^#(ok(X)) -> c_12(top^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [7] c_12(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(X)) -> mark(g(h(f(X))))} and weakly orienting the rules {top^#(ok(X)) -> c_12(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(X)) -> mark(g(h(f(X))))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {top^#(mark(X)) -> c_11(top^#(proper(X)))} and weakly orienting the rules { active(f(X)) -> mark(g(h(f(X)))) , top^#(ok(X)) -> c_12(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {top^#(mark(X)) -> c_11(top^#(proper(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [8] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [2] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [9] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [7] c_11(x1) = [1] x1 + [0] c_12(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { top^#(mark(X)) -> c_11(top^#(proper(X))) , active(f(X)) -> mark(g(h(f(X)))) , top^#(ok(X)) -> c_12(top^#(active(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { top^#(mark(X)) -> c_11(top^#(proper(X))) , active(f(X)) -> mark(g(h(f(X)))) , top^#(ok(X)) -> c_12(top^#(active(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { active_0(3) -> 29 , active_0(7) -> 29 , mark_0(3) -> 3 , mark_0(7) -> 3 , proper_0(3) -> 27 , proper_0(7) -> 27 , ok_0(3) -> 7 , ok_0(7) -> 7 , top^#_0(3) -> 25 , top^#_0(7) -> 25 , top^#_0(27) -> 26 , top^#_0(29) -> 28 , c_11_0(26) -> 25 , c_12_0(28) -> 25} 2) { active^#(f(X)) -> c_1(f^#(active(X))) , f^#(ok(X)) -> c_8(f^#(X)) , f^#(mark(X)) -> c_3(f^#(X))} The usable rules for this path are the following: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X)) , active^#(f(X)) -> c_1(f^#(active(X))) , f^#(ok(X)) -> c_8(f^#(X)) , f^#(mark(X)) -> c_3(f^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {f^#(ok(X)) -> c_8(f^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(ok(X)) -> c_8(f^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [9] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(mark(X)) -> c_3(f^#(X))} and weakly orienting the rules {f^#(ok(X)) -> c_8(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(mark(X)) -> c_3(f^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(f(X)) -> c_1(f^#(active(X)))} and weakly orienting the rules { f^#(mark(X)) -> c_3(f^#(X)) , f^#(ok(X)) -> c_8(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(X)) -> c_1(f^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [10] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [8] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(X)) -> mark(g(h(f(X))))} and weakly orienting the rules { active^#(f(X)) -> c_1(f^#(active(X))) , f^#(mark(X)) -> c_3(f^#(X)) , f^#(ok(X)) -> c_8(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(X)) -> mark(g(h(f(X))))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { active(f(X)) -> mark(g(h(f(X)))) , active^#(f(X)) -> c_1(f^#(active(X))) , f^#(mark(X)) -> c_3(f^#(X)) , f^#(ok(X)) -> c_8(f^#(X))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { active(f(X)) -> mark(g(h(f(X)))) , active^#(f(X)) -> c_1(f^#(active(X))) , f^#(mark(X)) -> c_3(f^#(X)) , f^#(ok(X)) -> c_8(f^#(X))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(7) -> 3 , ok_0(3) -> 7 , ok_0(7) -> 7 , active^#_0(3) -> 9 , active^#_0(7) -> 9 , f^#_0(3) -> 13 , f^#_0(7) -> 13 , c_3_0(13) -> 13 , c_8_0(13) -> 13} 3) { active^#(h(X)) -> c_2(h^#(active(X))) , h^#(ok(X)) -> c_10(h^#(X)) , h^#(mark(X)) -> c_4(h^#(X))} The usable rules for this path are the following: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X)) , active^#(h(X)) -> c_2(h^#(active(X))) , h^#(ok(X)) -> c_10(h^#(X)) , h^#(mark(X)) -> c_4(h^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {h^#(ok(X)) -> c_10(h^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {h^#(ok(X)) -> c_10(h^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [9] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {h^#(mark(X)) -> c_4(h^#(X))} and weakly orienting the rules {h^#(ok(X)) -> c_10(h^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {h^#(mark(X)) -> c_4(h^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(h(X)) -> c_2(h^#(active(X)))} and weakly orienting the rules { h^#(mark(X)) -> c_4(h^#(X)) , h^#(ok(X)) -> c_10(h^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(h(X)) -> c_2(h^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(X)) -> mark(g(h(f(X))))} and weakly orienting the rules { active^#(h(X)) -> c_2(h^#(active(X))) , h^#(mark(X)) -> c_4(h^#(X)) , h^#(ok(X)) -> c_10(h^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(X)) -> mark(g(h(f(X))))} Details: Interpretation Functions: active(x1) = [1] x1 + [3] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [5] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { active(f(X)) -> mark(g(h(f(X)))) , active^#(h(X)) -> c_2(h^#(active(X))) , h^#(mark(X)) -> c_4(h^#(X)) , h^#(ok(X)) -> c_10(h^#(X))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { active(f(X)) -> mark(g(h(f(X)))) , active^#(h(X)) -> c_2(h^#(active(X))) , h^#(mark(X)) -> c_4(h^#(X)) , h^#(ok(X)) -> c_10(h^#(X))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(2) -> 2 , ok_0(2) -> 2 , active^#_0(2) -> 1 , h^#_0(2) -> 1 , c_4_0(1) -> 1 , c_10_0(1) -> 1} 4) { proper^#(f(X)) -> c_5(f^#(proper(X))) , f^#(ok(X)) -> c_8(f^#(X)) , f^#(mark(X)) -> c_3(f^#(X))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X)) , proper^#(f(X)) -> c_5(f^#(proper(X))) , f^#(ok(X)) -> c_8(f^#(X)) , f^#(mark(X)) -> c_3(f^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {f^#(ok(X)) -> c_8(f^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(ok(X)) -> c_8(f^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [3] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(f(X)) -> c_5(f^#(proper(X)))} and weakly orienting the rules {f^#(ok(X)) -> c_8(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(f(X)) -> c_5(f^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_5(x1) = [1] x1 + [2] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(mark(X)) -> c_3(f^#(X))} and weakly orienting the rules { proper^#(f(X)) -> c_5(f^#(proper(X))) , f^#(ok(X)) -> c_8(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(mark(X)) -> c_3(f^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [8] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [8] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [13] c_5(x1) = [1] x1 + [2] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { f^#(mark(X)) -> c_3(f^#(X)) , proper^#(f(X)) -> c_5(f^#(proper(X))) , f^#(ok(X)) -> c_8(f^#(X))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { f^#(mark(X)) -> c_3(f^#(X)) , proper^#(f(X)) -> c_5(f^#(proper(X))) , f^#(ok(X)) -> c_8(f^#(X))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(7) -> 3 , ok_0(3) -> 7 , ok_0(7) -> 7 , f^#_0(3) -> 13 , f^#_0(7) -> 13 , c_3_0(13) -> 13 , proper^#_0(3) -> 18 , proper^#_0(7) -> 18 , c_8_0(13) -> 13} 5) { proper^#(h(X)) -> c_7(h^#(proper(X))) , h^#(ok(X)) -> c_10(h^#(X)) , h^#(mark(X)) -> c_4(h^#(X))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X)) , proper^#(h(X)) -> c_7(h^#(proper(X))) , h^#(ok(X)) -> c_10(h^#(X)) , h^#(mark(X)) -> c_4(h^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {h^#(ok(X)) -> c_10(h^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {h^#(ok(X)) -> c_10(h^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] proper^#(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(h(X)) -> c_7(h^#(proper(X)))} and weakly orienting the rules {h^#(ok(X)) -> c_10(h^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(h(X)) -> c_7(h^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] proper^#(x1) = [1] x1 + [9] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {h^#(mark(X)) -> c_4(h^#(X))} and weakly orienting the rules { proper^#(h(X)) -> c_7(h^#(proper(X))) , h^#(ok(X)) -> c_10(h^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {h^#(mark(X)) -> c_4(h^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [8] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [1] x1 + [8] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [9] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { h^#(mark(X)) -> c_4(h^#(X)) , proper^#(h(X)) -> c_7(h^#(proper(X))) , h^#(ok(X)) -> c_10(h^#(X))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { h^#(mark(X)) -> c_4(h^#(X)) , proper^#(h(X)) -> c_7(h^#(proper(X))) , h^#(ok(X)) -> c_10(h^#(X))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(7) -> 3 , ok_0(3) -> 7 , ok_0(7) -> 7 , h^#_0(3) -> 15 , h^#_0(7) -> 15 , c_4_0(15) -> 15 , proper^#_0(3) -> 18 , proper^#_0(7) -> 18 , c_10_0(15) -> 15} 6) {active^#(h(X)) -> c_2(h^#(active(X)))} The usable rules for this path are the following: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X)) , active^#(h(X)) -> c_2(h^#(active(X)))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(h(X)) -> c_2(h^#(active(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(h(X)) -> c_2(h^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(X)) -> mark(g(h(f(X))))} and weakly orienting the rules {active^#(h(X)) -> c_2(h^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(X)) -> mark(g(h(f(X))))} Details: Interpretation Functions: active(x1) = [1] x1 + [5] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [11] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [4] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { active(f(X)) -> mark(g(h(f(X)))) , active^#(h(X)) -> c_2(h^#(active(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { active(f(X)) -> mark(g(h(f(X)))) , active^#(h(X)) -> c_2(h^#(active(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(7) -> 3 , ok_0(3) -> 7 , ok_0(7) -> 7 , active^#_0(3) -> 9 , active^#_0(7) -> 9 , h^#_0(3) -> 15 , h^#_0(7) -> 15} 7) { proper^#(g(X)) -> c_6(g^#(proper(X))) , g^#(ok(X)) -> c_9(g^#(X))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X)) , proper^#(g(X)) -> c_6(g^#(proper(X))) , g^#(ok(X)) -> c_9(g^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(g(X)) -> c_6(g^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(g(X)) -> c_6(g^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [3] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [6] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g^#(ok(X)) -> c_9(g^#(X))} and weakly orienting the rules {proper^#(g(X)) -> c_6(g^#(proper(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(ok(X)) -> c_9(g^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { g^#(ok(X)) -> c_9(g^#(X)) , proper^#(g(X)) -> c_6(g^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { g^#(ok(X)) -> c_9(g^#(X)) , proper^#(g(X)) -> c_6(g^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(7) -> 3 , ok_0(3) -> 7 , ok_0(7) -> 7 , g^#_0(3) -> 11 , g^#_0(7) -> 11 , proper^#_0(3) -> 18 , proper^#_0(7) -> 18 , c_9_0(11) -> 11} 8) {active^#(f(X)) -> c_1(f^#(active(X)))} The usable rules for this path are the following: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(X)) -> mark(g(h(f(X)))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X)) , active^#(f(X)) -> c_1(f^#(active(X)))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(f(X)) -> c_1(f^#(active(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(X)) -> c_1(f^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [3] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(f(X)) -> mark(g(h(f(X))))} and weakly orienting the rules {active^#(f(X)) -> c_1(f^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(f(X)) -> mark(g(h(f(X))))} Details: Interpretation Functions: active(x1) = [1] x1 + [7] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [15] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [4] f^#(x1) = [1] x1 + [2] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { active(f(X)) -> mark(g(h(f(X)))) , active^#(f(X)) -> c_1(f^#(active(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { active(f(X)) -> mark(g(h(f(X)))) , active^#(f(X)) -> c_1(f^#(active(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(7) -> 3 , ok_0(3) -> 7 , ok_0(7) -> 7 , active^#_0(3) -> 9 , active^#_0(7) -> 9 , f^#_0(3) -> 13 , f^#_0(7) -> 13} 9) {proper^#(g(X)) -> c_6(g^#(proper(X)))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X)) , proper^#(g(X)) -> c_6(g^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(g(X)) -> c_6(g^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(g(X)) -> c_6(g^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: {proper^#(g(X)) -> c_6(g^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: {proper^#(g(X)) -> c_6(g^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(7) -> 3 , ok_0(3) -> 7 , ok_0(7) -> 7 , g^#_0(3) -> 11 , g^#_0(7) -> 11 , proper^#_0(3) -> 18 , proper^#_0(7) -> 18} 10) {proper^#(h(X)) -> c_7(h^#(proper(X)))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X)) , proper^#(h(X)) -> c_7(h^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(h(X)) -> c_7(h^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(h(X)) -> c_7(h^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: {proper^#(h(X)) -> c_7(h^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: {proper^#(h(X)) -> c_7(h^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(7) -> 3 , ok_0(3) -> 7 , ok_0(7) -> 7 , h^#_0(3) -> 15 , h^#_0(7) -> 15 , proper^#_0(3) -> 18 , proper^#_0(7) -> 18} 11) {proper^#(f(X)) -> c_5(f^#(proper(X)))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X)) , proper^#(f(X)) -> c_5(f^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(f(X)) -> c_5(f^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(f(X)) -> c_5(f^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [5] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [7] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: {proper^#(f(X)) -> c_5(f^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: {proper^#(f(X)) -> c_5(f^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(7) -> 3 , ok_0(3) -> 7 , ok_0(7) -> 7 , f^#_0(3) -> 13 , f^#_0(7) -> 13 , proper^#_0(3) -> 18 , proper^#_0(7) -> 18} 12) { active^#(f(X)) -> c_0(g^#(h(f(X)))) , g^#(ok(X)) -> c_9(g^#(X))} The usable rules for this path are the following: { f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , active^#(f(X)) -> c_0(g^#(h(f(X)))) , g^#(ok(X)) -> c_9(g^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(f(X)) -> c_0(g^#(h(f(X))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(X)) -> c_0(g^#(h(f(X))))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [0] g(x1) = [0] x1 + [0] h(x1) = [1] x1 + [1] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] g^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g^#(ok(X)) -> c_9(g^#(X))} and weakly orienting the rules {active^#(f(X)) -> c_0(g^#(h(f(X))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(ok(X)) -> c_9(g^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [0] g(x1) = [0] x1 + [0] h(x1) = [1] x1 + [1] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] g^#(x1) = [1] x1 + [8] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { g^#(ok(X)) -> c_9(g^#(X)) , active^#(f(X)) -> c_0(g^#(h(f(X))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { g^#(ok(X)) -> c_9(g^#(X)) , active^#(f(X)) -> c_0(g^#(h(f(X))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(7) -> 3 , ok_0(3) -> 7 , ok_0(7) -> 7 , active^#_0(3) -> 9 , active^#_0(7) -> 9 , g^#_0(3) -> 11 , g^#_0(7) -> 11 , c_9_0(11) -> 11} 13) {active^#(f(X)) -> c_0(g^#(h(f(X))))} The usable rules for this path are the following: { f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) , active^#(f(X)) -> c_0(g^#(h(f(X))))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(f(X)) -> c_0(g^#(h(f(X))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(X)) -> c_0(g^#(h(f(X))))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [0] g(x1) = [0] x1 + [0] h(x1) = [1] x1 + [1] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] g^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: {active^#(f(X)) -> c_0(g^#(h(f(X))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: {active^#(f(X)) -> c_0(g^#(h(f(X))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(7) -> 3 , ok_0(3) -> 7 , ok_0(7) -> 7 , active^#_0(3) -> 9 , active^#_0(7) -> 9 , g^#_0(3) -> 11 , g^#_0(7) -> 11}