'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  active(f(X)) -> mark(g(h(f(X))))
     , active(f(X)) -> f(active(X))
     , active(h(X)) -> h(active(X))
     , f(mark(X)) -> mark(f(X))
     , h(mark(X)) -> mark(h(X))
     , proper(f(X)) -> f(proper(X))
     , proper(g(X)) -> g(proper(X))
     , proper(h(X)) -> h(proper(X))
     , f(ok(X)) -> ok(f(X))
     , g(ok(X)) -> ok(g(X))
     , h(ok(X)) -> ok(h(X))
     , top(mark(X)) -> top(proper(X))
     , top(ok(X)) -> top(active(X))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  active^#(f(X)) -> c_0(g^#(h(f(X))))
    , active^#(f(X)) -> c_1(f^#(active(X)))
    , active^#(h(X)) -> c_2(h^#(active(X)))
    , f^#(mark(X)) -> c_3(f^#(X))
    , h^#(mark(X)) -> c_4(h^#(X))
    , proper^#(f(X)) -> c_5(f^#(proper(X)))
    , proper^#(g(X)) -> c_6(g^#(proper(X)))
    , proper^#(h(X)) -> c_7(h^#(proper(X)))
    , f^#(ok(X)) -> c_8(f^#(X))
    , g^#(ok(X)) -> c_9(g^#(X))
    , h^#(ok(X)) -> c_10(h^#(X))
    , top^#(mark(X)) -> c_11(top^#(proper(X)))
    , top^#(ok(X)) -> c_12(top^#(active(X)))}
  
  The usable rules are:
   {  active(f(X)) -> mark(g(h(f(X))))
    , active(f(X)) -> f(active(X))
    , active(h(X)) -> h(active(X))
    , f(mark(X)) -> mark(f(X))
    , h(mark(X)) -> mark(h(X))
    , proper(f(X)) -> f(proper(X))
    , proper(g(X)) -> g(proper(X))
    , proper(h(X)) -> h(proper(X))
    , f(ok(X)) -> ok(f(X))
    , h(ok(X)) -> ok(h(X))
    , g(ok(X)) -> ok(g(X))}
  
  The estimated dependency graph contains the following edges:
   {active^#(f(X)) -> c_0(g^#(h(f(X))))}
     ==> {g^#(ok(X)) -> c_9(g^#(X))}
   {active^#(f(X)) -> c_1(f^#(active(X)))}
     ==> {f^#(ok(X)) -> c_8(f^#(X))}
   {active^#(f(X)) -> c_1(f^#(active(X)))}
     ==> {f^#(mark(X)) -> c_3(f^#(X))}
   {active^#(h(X)) -> c_2(h^#(active(X)))}
     ==> {h^#(ok(X)) -> c_10(h^#(X))}
   {active^#(h(X)) -> c_2(h^#(active(X)))}
     ==> {h^#(mark(X)) -> c_4(h^#(X))}
   {f^#(mark(X)) -> c_3(f^#(X))}
     ==> {f^#(ok(X)) -> c_8(f^#(X))}
   {f^#(mark(X)) -> c_3(f^#(X))}
     ==> {f^#(mark(X)) -> c_3(f^#(X))}
   {h^#(mark(X)) -> c_4(h^#(X))}
     ==> {h^#(ok(X)) -> c_10(h^#(X))}
   {h^#(mark(X)) -> c_4(h^#(X))}
     ==> {h^#(mark(X)) -> c_4(h^#(X))}
   {proper^#(f(X)) -> c_5(f^#(proper(X)))}
     ==> {f^#(ok(X)) -> c_8(f^#(X))}
   {proper^#(f(X)) -> c_5(f^#(proper(X)))}
     ==> {f^#(mark(X)) -> c_3(f^#(X))}
   {proper^#(g(X)) -> c_6(g^#(proper(X)))}
     ==> {g^#(ok(X)) -> c_9(g^#(X))}
   {proper^#(h(X)) -> c_7(h^#(proper(X)))}
     ==> {h^#(ok(X)) -> c_10(h^#(X))}
   {proper^#(h(X)) -> c_7(h^#(proper(X)))}
     ==> {h^#(mark(X)) -> c_4(h^#(X))}
   {f^#(ok(X)) -> c_8(f^#(X))}
     ==> {f^#(ok(X)) -> c_8(f^#(X))}
   {f^#(ok(X)) -> c_8(f^#(X))}
     ==> {f^#(mark(X)) -> c_3(f^#(X))}
   {g^#(ok(X)) -> c_9(g^#(X))}
     ==> {g^#(ok(X)) -> c_9(g^#(X))}
   {h^#(ok(X)) -> c_10(h^#(X))}
     ==> {h^#(ok(X)) -> c_10(h^#(X))}
   {h^#(ok(X)) -> c_10(h^#(X))}
     ==> {h^#(mark(X)) -> c_4(h^#(X))}
   {top^#(mark(X)) -> c_11(top^#(proper(X)))}
     ==> {top^#(ok(X)) -> c_12(top^#(active(X)))}
   {top^#(mark(X)) -> c_11(top^#(proper(X)))}
     ==> {top^#(mark(X)) -> c_11(top^#(proper(X)))}
   {top^#(ok(X)) -> c_12(top^#(active(X)))}
     ==> {top^#(ok(X)) -> c_12(top^#(active(X)))}
   {top^#(ok(X)) -> c_12(top^#(active(X)))}
     ==> {top^#(mark(X)) -> c_11(top^#(proper(X)))}
  
  We consider the following path(s):
   1) {  top^#(mark(X)) -> c_11(top^#(proper(X)))
       , top^#(ok(X)) -> c_12(top^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(f(X)) -> mark(g(h(f(X))))
       , active(f(X)) -> f(active(X))
       , active(h(X)) -> h(active(X))
       , proper(f(X)) -> f(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , f(ok(X)) -> ok(f(X))
       , h(ok(X)) -> ok(h(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(X)) -> mark(g(h(f(X))))
               , active(f(X)) -> f(active(X))
               , active(h(X)) -> h(active(X))
               , proper(f(X)) -> f(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , f(ok(X)) -> ok(f(X))
               , h(ok(X)) -> ok(h(X))
               , g(ok(X)) -> ok(g(X))
               , top^#(mark(X)) -> c_11(top^#(proper(X)))
               , top^#(ok(X)) -> c_12(top^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {top^#(ok(X)) -> c_12(top^#(active(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(ok(X)) -> c_12(top^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [7]
                  c_12(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(X)) -> mark(g(h(f(X))))}
            and weakly orienting the rules
            {top^#(ok(X)) -> c_12(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(X)) -> mark(g(h(f(X))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {top^#(mark(X)) -> c_11(top^#(proper(X)))}
            and weakly orienting the rules
            {  active(f(X)) -> mark(g(h(f(X))))
             , top^#(ok(X)) -> c_12(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(mark(X)) -> c_11(top^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [8]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [2]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [9]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [7]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(h(X)) -> h(active(X))
                 , proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , f(ok(X)) -> ok(f(X))
                 , h(ok(X)) -> ok(h(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  top^#(mark(X)) -> c_11(top^#(proper(X)))
                 , active(f(X)) -> mark(g(h(f(X))))
                 , top^#(ok(X)) -> c_12(top^#(active(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(h(X)) -> h(active(X))
                   , proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , h(ok(X)) -> ok(h(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  top^#(mark(X)) -> c_11(top^#(proper(X)))
                   , active(f(X)) -> mark(g(h(f(X))))
                   , top^#(ok(X)) -> c_12(top^#(active(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  active_0(3) -> 29
                 , active_0(7) -> 29
                 , mark_0(3) -> 3
                 , mark_0(7) -> 3
                 , proper_0(3) -> 27
                 , proper_0(7) -> 27
                 , ok_0(3) -> 7
                 , ok_0(7) -> 7
                 , top^#_0(3) -> 25
                 , top^#_0(7) -> 25
                 , top^#_0(27) -> 26
                 , top^#_0(29) -> 28
                 , c_11_0(26) -> 25
                 , c_12_0(28) -> 25}
      
   2) {  active^#(f(X)) -> c_1(f^#(active(X)))
       , f^#(ok(X)) -> c_8(f^#(X))
       , f^#(mark(X)) -> c_3(f^#(X))}
      
      The usable rules for this path are the following:
      {  active(f(X)) -> mark(g(h(f(X))))
       , active(f(X)) -> f(active(X))
       , active(h(X)) -> h(active(X))
       , f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , f(ok(X)) -> ok(f(X))
       , h(ok(X)) -> ok(h(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(X)) -> mark(g(h(f(X))))
               , active(f(X)) -> f(active(X))
               , active(h(X)) -> h(active(X))
               , f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , f(ok(X)) -> ok(f(X))
               , h(ok(X)) -> ok(h(X))
               , g(ok(X)) -> ok(g(X))
               , active^#(f(X)) -> c_1(f^#(active(X)))
               , f^#(ok(X)) -> c_8(f^#(X))
               , f^#(mark(X)) -> c_3(f^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {f^#(ok(X)) -> c_8(f^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(ok(X)) -> c_8(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [9]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(mark(X)) -> c_3(f^#(X))}
            and weakly orienting the rules
            {f^#(ok(X)) -> c_8(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(mark(X)) -> c_3(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(X)) -> c_1(f^#(active(X)))}
            and weakly orienting the rules
            {  f^#(mark(X)) -> c_3(f^#(X))
             , f^#(ok(X)) -> c_8(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(X)) -> c_1(f^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [10]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [8]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(X)) -> mark(g(h(f(X))))}
            and weakly orienting the rules
            {  active^#(f(X)) -> c_1(f^#(active(X)))
             , f^#(mark(X)) -> c_3(f^#(X))
             , f^#(ok(X)) -> c_8(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(X)) -> mark(g(h(f(X))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(h(X)) -> h(active(X))
                 , f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , f(ok(X)) -> ok(f(X))
                 , h(ok(X)) -> ok(h(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  active(f(X)) -> mark(g(h(f(X))))
                 , active^#(f(X)) -> c_1(f^#(active(X)))
                 , f^#(mark(X)) -> c_3(f^#(X))
                 , f^#(ok(X)) -> c_8(f^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(h(X)) -> h(active(X))
                   , f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , h(ok(X)) -> ok(h(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  active(f(X)) -> mark(g(h(f(X))))
                   , active^#(f(X)) -> c_1(f^#(active(X)))
                   , f^#(mark(X)) -> c_3(f^#(X))
                   , f^#(ok(X)) -> c_8(f^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(7) -> 3
                 , ok_0(3) -> 7
                 , ok_0(7) -> 7
                 , active^#_0(3) -> 9
                 , active^#_0(7) -> 9
                 , f^#_0(3) -> 13
                 , f^#_0(7) -> 13
                 , c_3_0(13) -> 13
                 , c_8_0(13) -> 13}
      
   3) {  active^#(h(X)) -> c_2(h^#(active(X)))
       , h^#(ok(X)) -> c_10(h^#(X))
       , h^#(mark(X)) -> c_4(h^#(X))}
      
      The usable rules for this path are the following:
      {  active(f(X)) -> mark(g(h(f(X))))
       , active(f(X)) -> f(active(X))
       , active(h(X)) -> h(active(X))
       , f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , f(ok(X)) -> ok(f(X))
       , h(ok(X)) -> ok(h(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(X)) -> mark(g(h(f(X))))
               , active(f(X)) -> f(active(X))
               , active(h(X)) -> h(active(X))
               , f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , f(ok(X)) -> ok(f(X))
               , h(ok(X)) -> ok(h(X))
               , g(ok(X)) -> ok(g(X))
               , active^#(h(X)) -> c_2(h^#(active(X)))
               , h^#(ok(X)) -> c_10(h^#(X))
               , h^#(mark(X)) -> c_4(h^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {h^#(ok(X)) -> c_10(h^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {h^#(ok(X)) -> c_10(h^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [9]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {h^#(mark(X)) -> c_4(h^#(X))}
            and weakly orienting the rules
            {h^#(ok(X)) -> c_10(h^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {h^#(mark(X)) -> c_4(h^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(h(X)) -> c_2(h^#(active(X)))}
            and weakly orienting the rules
            {  h^#(mark(X)) -> c_4(h^#(X))
             , h^#(ok(X)) -> c_10(h^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(h(X)) -> c_2(h^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(X)) -> mark(g(h(f(X))))}
            and weakly orienting the rules
            {  active^#(h(X)) -> c_2(h^#(active(X)))
             , h^#(mark(X)) -> c_4(h^#(X))
             , h^#(ok(X)) -> c_10(h^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(X)) -> mark(g(h(f(X))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [3]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(h(X)) -> h(active(X))
                 , f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , f(ok(X)) -> ok(f(X))
                 , h(ok(X)) -> ok(h(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  active(f(X)) -> mark(g(h(f(X))))
                 , active^#(h(X)) -> c_2(h^#(active(X)))
                 , h^#(mark(X)) -> c_4(h^#(X))
                 , h^#(ok(X)) -> c_10(h^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(h(X)) -> h(active(X))
                   , f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , h(ok(X)) -> ok(h(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  active(f(X)) -> mark(g(h(f(X))))
                   , active^#(h(X)) -> c_2(h^#(active(X)))
                   , h^#(mark(X)) -> c_4(h^#(X))
                   , h^#(ok(X)) -> c_10(h^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , h^#_0(2) -> 1
                 , c_4_0(1) -> 1
                 , c_10_0(1) -> 1}
      
   4) {  proper^#(f(X)) -> c_5(f^#(proper(X)))
       , f^#(ok(X)) -> c_8(f^#(X))
       , f^#(mark(X)) -> c_3(f^#(X))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , f(ok(X)) -> ok(f(X))
       , h(ok(X)) -> ok(h(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , f(ok(X)) -> ok(f(X))
               , h(ok(X)) -> ok(h(X))
               , g(ok(X)) -> ok(g(X))
               , proper^#(f(X)) -> c_5(f^#(proper(X)))
               , f^#(ok(X)) -> c_8(f^#(X))
               , f^#(mark(X)) -> c_3(f^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {f^#(ok(X)) -> c_8(f^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(ok(X)) -> c_8(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [3]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(f(X)) -> c_5(f^#(proper(X)))}
            and weakly orienting the rules
            {f^#(ok(X)) -> c_8(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(f(X)) -> c_5(f^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_5(x1) = [1] x1 + [2]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(mark(X)) -> c_3(f^#(X))}
            and weakly orienting the rules
            {  proper^#(f(X)) -> c_5(f^#(proper(X)))
             , f^#(ok(X)) -> c_8(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(mark(X)) -> c_3(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [8]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [8]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [13]
                  c_5(x1) = [1] x1 + [2]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , f(ok(X)) -> ok(f(X))
                 , h(ok(X)) -> ok(h(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  f^#(mark(X)) -> c_3(f^#(X))
                 , proper^#(f(X)) -> c_5(f^#(proper(X)))
                 , f^#(ok(X)) -> c_8(f^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , h(ok(X)) -> ok(h(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  f^#(mark(X)) -> c_3(f^#(X))
                   , proper^#(f(X)) -> c_5(f^#(proper(X)))
                   , f^#(ok(X)) -> c_8(f^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(7) -> 3
                 , ok_0(3) -> 7
                 , ok_0(7) -> 7
                 , f^#_0(3) -> 13
                 , f^#_0(7) -> 13
                 , c_3_0(13) -> 13
                 , proper^#_0(3) -> 18
                 , proper^#_0(7) -> 18
                 , c_8_0(13) -> 13}
      
   5) {  proper^#(h(X)) -> c_7(h^#(proper(X)))
       , h^#(ok(X)) -> c_10(h^#(X))
       , h^#(mark(X)) -> c_4(h^#(X))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , f(ok(X)) -> ok(f(X))
       , h(ok(X)) -> ok(h(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , f(ok(X)) -> ok(f(X))
               , h(ok(X)) -> ok(h(X))
               , g(ok(X)) -> ok(g(X))
               , proper^#(h(X)) -> c_7(h^#(proper(X)))
               , h^#(ok(X)) -> c_10(h^#(X))
               , h^#(mark(X)) -> c_4(h^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {h^#(ok(X)) -> c_10(h^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {h^#(ok(X)) -> c_10(h^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(h(X)) -> c_7(h^#(proper(X)))}
            and weakly orienting the rules
            {h^#(ok(X)) -> c_10(h^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(h(X)) -> c_7(h^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [9]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {h^#(mark(X)) -> c_4(h^#(X))}
            and weakly orienting the rules
            {  proper^#(h(X)) -> c_7(h^#(proper(X)))
             , h^#(ok(X)) -> c_10(h^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {h^#(mark(X)) -> c_4(h^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [8]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [1] x1 + [8]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , f(ok(X)) -> ok(f(X))
                 , h(ok(X)) -> ok(h(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  h^#(mark(X)) -> c_4(h^#(X))
                 , proper^#(h(X)) -> c_7(h^#(proper(X)))
                 , h^#(ok(X)) -> c_10(h^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , h(ok(X)) -> ok(h(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  h^#(mark(X)) -> c_4(h^#(X))
                   , proper^#(h(X)) -> c_7(h^#(proper(X)))
                   , h^#(ok(X)) -> c_10(h^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(7) -> 3
                 , ok_0(3) -> 7
                 , ok_0(7) -> 7
                 , h^#_0(3) -> 15
                 , h^#_0(7) -> 15
                 , c_4_0(15) -> 15
                 , proper^#_0(3) -> 18
                 , proper^#_0(7) -> 18
                 , c_10_0(15) -> 15}
      
   6) {active^#(h(X)) -> c_2(h^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(f(X)) -> mark(g(h(f(X))))
       , active(f(X)) -> f(active(X))
       , active(h(X)) -> h(active(X))
       , f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , f(ok(X)) -> ok(f(X))
       , h(ok(X)) -> ok(h(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(X)) -> mark(g(h(f(X))))
               , active(f(X)) -> f(active(X))
               , active(h(X)) -> h(active(X))
               , f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , f(ok(X)) -> ok(f(X))
               , h(ok(X)) -> ok(h(X))
               , g(ok(X)) -> ok(g(X))
               , active^#(h(X)) -> c_2(h^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(h(X)) -> c_2(h^#(active(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(h(X)) -> c_2(h^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(X)) -> mark(g(h(f(X))))}
            and weakly orienting the rules
            {active^#(h(X)) -> c_2(h^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(X)) -> mark(g(h(f(X))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [5]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [11]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [4]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(h(X)) -> h(active(X))
                 , f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , f(ok(X)) -> ok(f(X))
                 , h(ok(X)) -> ok(h(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  active(f(X)) -> mark(g(h(f(X))))
                 , active^#(h(X)) -> c_2(h^#(active(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(h(X)) -> h(active(X))
                   , f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , h(ok(X)) -> ok(h(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  active(f(X)) -> mark(g(h(f(X))))
                   , active^#(h(X)) -> c_2(h^#(active(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(7) -> 3
                 , ok_0(3) -> 7
                 , ok_0(7) -> 7
                 , active^#_0(3) -> 9
                 , active^#_0(7) -> 9
                 , h^#_0(3) -> 15
                 , h^#_0(7) -> 15}
      
   7) {  proper^#(g(X)) -> c_6(g^#(proper(X)))
       , g^#(ok(X)) -> c_9(g^#(X))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , f(ok(X)) -> ok(f(X))
       , h(ok(X)) -> ok(h(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , f(ok(X)) -> ok(f(X))
               , h(ok(X)) -> ok(h(X))
               , g(ok(X)) -> ok(g(X))
               , proper^#(g(X)) -> c_6(g^#(proper(X)))
               , g^#(ok(X)) -> c_9(g^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(g(X)) -> c_6(g^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(g(X)) -> c_6(g^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [3]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [6]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g^#(ok(X)) -> c_9(g^#(X))}
            and weakly orienting the rules
            {proper^#(g(X)) -> c_6(g^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g^#(ok(X)) -> c_9(g^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , f(ok(X)) -> ok(f(X))
                 , h(ok(X)) -> ok(h(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  g^#(ok(X)) -> c_9(g^#(X))
                 , proper^#(g(X)) -> c_6(g^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , h(ok(X)) -> ok(h(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  g^#(ok(X)) -> c_9(g^#(X))
                   , proper^#(g(X)) -> c_6(g^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(7) -> 3
                 , ok_0(3) -> 7
                 , ok_0(7) -> 7
                 , g^#_0(3) -> 11
                 , g^#_0(7) -> 11
                 , proper^#_0(3) -> 18
                 , proper^#_0(7) -> 18
                 , c_9_0(11) -> 11}
      
   8) {active^#(f(X)) -> c_1(f^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(f(X)) -> mark(g(h(f(X))))
       , active(f(X)) -> f(active(X))
       , active(h(X)) -> h(active(X))
       , f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , f(ok(X)) -> ok(f(X))
       , h(ok(X)) -> ok(h(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(X)) -> mark(g(h(f(X))))
               , active(f(X)) -> f(active(X))
               , active(h(X)) -> h(active(X))
               , f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , f(ok(X)) -> ok(f(X))
               , h(ok(X)) -> ok(h(X))
               , g(ok(X)) -> ok(g(X))
               , active^#(f(X)) -> c_1(f^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(X)) -> c_1(f^#(active(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(X)) -> c_1(f^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [3]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(f(X)) -> mark(g(h(f(X))))}
            and weakly orienting the rules
            {active^#(f(X)) -> c_1(f^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(f(X)) -> mark(g(h(f(X))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [7]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [15]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [4]
                  f^#(x1) = [1] x1 + [2]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(h(X)) -> h(active(X))
                 , f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , f(ok(X)) -> ok(f(X))
                 , h(ok(X)) -> ok(h(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  active(f(X)) -> mark(g(h(f(X))))
                 , active^#(f(X)) -> c_1(f^#(active(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(h(X)) -> h(active(X))
                   , f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , h(ok(X)) -> ok(h(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  active(f(X)) -> mark(g(h(f(X))))
                   , active^#(f(X)) -> c_1(f^#(active(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(7) -> 3
                 , ok_0(3) -> 7
                 , ok_0(7) -> 7
                 , active^#_0(3) -> 9
                 , active^#_0(7) -> 9
                 , f^#_0(3) -> 13
                 , f^#_0(7) -> 13}
      
   9) {proper^#(g(X)) -> c_6(g^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , f(ok(X)) -> ok(f(X))
       , h(ok(X)) -> ok(h(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , f(ok(X)) -> ok(f(X))
               , h(ok(X)) -> ok(h(X))
               , g(ok(X)) -> ok(g(X))
               , proper^#(g(X)) -> c_6(g^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(g(X)) -> c_6(g^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(g(X)) -> c_6(g^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , f(ok(X)) -> ok(f(X))
                 , h(ok(X)) -> ok(h(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules: {proper^#(g(X)) -> c_6(g^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , h(ok(X)) -> ok(h(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules: {proper^#(g(X)) -> c_6(g^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(7) -> 3
                 , ok_0(3) -> 7
                 , ok_0(7) -> 7
                 , g^#_0(3) -> 11
                 , g^#_0(7) -> 11
                 , proper^#_0(3) -> 18
                 , proper^#_0(7) -> 18}
      
   10)
      {proper^#(h(X)) -> c_7(h^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , f(ok(X)) -> ok(f(X))
       , h(ok(X)) -> ok(h(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , f(ok(X)) -> ok(f(X))
               , h(ok(X)) -> ok(h(X))
               , g(ok(X)) -> ok(g(X))
               , proper^#(h(X)) -> c_7(h^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(h(X)) -> c_7(h^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(h(X)) -> c_7(h^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , f(ok(X)) -> ok(f(X))
                 , h(ok(X)) -> ok(h(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules: {proper^#(h(X)) -> c_7(h^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , h(ok(X)) -> ok(h(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules: {proper^#(h(X)) -> c_7(h^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(7) -> 3
                 , ok_0(3) -> 7
                 , ok_0(7) -> 7
                 , h^#_0(3) -> 15
                 , h^#_0(7) -> 15
                 , proper^#_0(3) -> 18
                 , proper^#_0(7) -> 18}
      
   11)
      {proper^#(f(X)) -> c_5(f^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , f(ok(X)) -> ok(f(X))
       , h(ok(X)) -> ok(h(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , f(ok(X)) -> ok(f(X))
               , h(ok(X)) -> ok(h(X))
               , g(ok(X)) -> ok(g(X))
               , proper^#(f(X)) -> c_5(f^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(f(X)) -> c_5(f^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(f(X)) -> c_5(f^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [7]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , f(ok(X)) -> ok(f(X))
                 , h(ok(X)) -> ok(h(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules: {proper^#(f(X)) -> c_5(f^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , h(ok(X)) -> ok(h(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules: {proper^#(f(X)) -> c_5(f^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(7) -> 3
                 , ok_0(3) -> 7
                 , ok_0(7) -> 7
                 , f^#_0(3) -> 13
                 , f^#_0(7) -> 13
                 , proper^#_0(3) -> 18
                 , proper^#_0(7) -> 18}
      
   12)
      {  active^#(f(X)) -> c_0(g^#(h(f(X))))
       , g^#(ok(X)) -> c_9(g^#(X))}
      
      The usable rules for this path are the following:
      {  f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , f(ok(X)) -> ok(f(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , f(ok(X)) -> ok(f(X))
               , h(ok(X)) -> ok(h(X))
               , active^#(f(X)) -> c_0(g^#(h(f(X))))
               , g^#(ok(X)) -> c_9(g^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(X)) -> c_0(g^#(h(f(X))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(X)) -> c_0(g^#(h(f(X))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  h(x1) = [1] x1 + [1]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  g^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g^#(ok(X)) -> c_9(g^#(X))}
            and weakly orienting the rules
            {active^#(f(X)) -> c_0(g^#(h(f(X))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g^#(ok(X)) -> c_9(g^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  h(x1) = [1] x1 + [1]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  g^#(x1) = [1] x1 + [8]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , f(ok(X)) -> ok(f(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules:
                {  g^#(ok(X)) -> c_9(g^#(X))
                 , active^#(f(X)) -> c_0(g^#(h(f(X))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules:
                  {  g^#(ok(X)) -> c_9(g^#(X))
                   , active^#(f(X)) -> c_0(g^#(h(f(X))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(7) -> 3
                 , ok_0(3) -> 7
                 , ok_0(7) -> 7
                 , active^#_0(3) -> 9
                 , active^#_0(7) -> 9
                 , g^#_0(3) -> 11
                 , g^#_0(7) -> 11
                 , c_9_0(11) -> 11}
      
   13)
      {active^#(f(X)) -> c_0(g^#(h(f(X))))}
      
      The usable rules for this path are the following:
      {  f(mark(X)) -> mark(f(X))
       , h(mark(X)) -> mark(h(X))
       , f(ok(X)) -> ok(f(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  f(mark(X)) -> mark(f(X))
               , h(mark(X)) -> mark(h(X))
               , f(ok(X)) -> ok(f(X))
               , h(ok(X)) -> ok(h(X))
               , active^#(f(X)) -> c_0(g^#(h(f(X))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(X)) -> c_0(g^#(h(f(X))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(X)) -> c_0(g^#(h(f(X))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  h(x1) = [1] x1 + [1]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  g^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  f(mark(X)) -> mark(f(X))
                 , h(mark(X)) -> mark(h(X))
                 , f(ok(X)) -> ok(f(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules: {active^#(f(X)) -> c_0(g^#(h(f(X))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  f(mark(X)) -> mark(f(X))
                   , h(mark(X)) -> mark(h(X))
                   , f(ok(X)) -> ok(f(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules: {active^#(f(X)) -> c_0(g^#(h(f(X))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(7) -> 3
                 , ok_0(3) -> 7
                 , ok_0(7) -> 7
                 , active^#_0(3) -> 9
                 , active^#_0(7) -> 9
                 , g^#_0(3) -> 11
                 , g^#_0(7) -> 11}